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Scalable

Atomic

Decentralized
Convenient Branching
Repeated Merge
Robust Storage

Easy to Use

Portable
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Early History Of Mercurial

April 6, 2005: Bitmover announces end of
gratis version of Bitkeeper

Linus mentions he's looking at alternatives
I start working on Mercurial

Linus starts working on Git

April 8: Linus releases initial nearly useless Git
snapshot

April 19: Mercurial 0.1 released
features: familiar interface, etficient storage,
commit/checkout/clone/pull/merge

April 20: Linus fails to destroy Git in a timely
fashion



Desirable Properties For
Revision Storage



Desirable Properties For
Revision Storage

e O(1) addition and retrieval



Desirable Properties For
Revision Storage

e O(1) addition and retrieval

* immutable or append-only



Desirable Properties For
Revision Storage

e O(1) addition and retrieval
* immutable or append-only

 decent compression



Desirable Properties For
Revision Storage

O(1) addition and retrieval
immutable or append-only
decent compression

strong integrity checks



Desirable Properties For
Revision Storage

O(1) addition and retrieval
immutable or append-only

decent compression

strong integrity checks

cluster file changes together on disk



Desirable Properties For
Revision Storage

O(1) addition and retrieval
immutable or append-only

decent compression

strong integrity checks

cluster file changes together on disk

efficient logging and annotate



Revlogs

reviog index

revision 6 record

reviog data

full revision 4

delta 4-5
delta 5-6




Changesets, Manifests, and
Files
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Transactions and Rollback

Every repository write is protected by a simple
transaction log

The log records the starting length of each
revlog touched

On abort, each revlog is truncated to its
original length

We save the most recent transaction log to
allow manual rollback (“undo”)



Synchronization and Merging

0@/0*00»048*0

1. Alice makes changes pulls changes from Bob's repository

O*0gy o»o@o

2. Bob makes changes Alice merges with Bob
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Taking Advantage of the FS

Avoiding seeks is critical for performance
Traversal order matters!

Ordering by hash means random seeking in the
working directory and degrades to random
seeking on copy

Ordering by modification time degrades to
random seeking over time

Ordering by pathname is stable and gives
largely monotonic head movement
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Some Other Optimizations

Mercurial uses a custom delta algorithm
Applying long chains of deltas is clever

Caretful ordering avoids locking for most
operations

Local clones use copy-on-write

Remote clone uses recompression for WAN
transmission

Network protocol uses graph discovery
algorithm for efficiency
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A Benchmark

commit 773 patches (20MB) for 2.6.18-rc1 to
-mm?2

1.8GHz AMDG64 laptop, 1.2GB of RAM
freshly formatted ext3 filesystem,
data=writeback,noatime

Git 1.4.1:
S git-quilt-import 2.6.18-rcl-mm2

real: 2m7.701ls user: 1ml5.953s sys: O0m30.186s

Mercurial:
S hg gpush -a 2.6.18-rcl-mm2
real: 1ml8.398s user: Om42.511ls sys: Oml0.105s



Mercurial Wiki:
http://selenic.com/mercurial



