Towards A Better SCM.:
Revlog and Mercurial

Matt Mackall
Selenic Consulting
mpm@selenic.com



Things To Consider When
Building A New SCM



Things To Consider When
Building A New SCM

e Scalable



Things To Consider When
Building A New SCM

e Scalable

e Atomic



Things To Consider When
Building A New SCM

e Scalable

e Atomic

e Decentralized



Things To Consider When
Building A New SCM

Scalable
Atomic
Decentralized

Convenient Branching



Things To Consider When
Building A New SCM

Scalable

Atomic

Decentralized
Convenient Branching

Repeated Merge



Things To Consider When
Building A New SCM

Scalable

Atomic

Decentralized
Convenient Branching
Repeated Merge
Robust Storage



Things To Consider When
Building A New SCM

Scalable

Atomic

Decentralized
Convenient Branching
Repeated Merge
Robust Storage

Easy to Use



Things To Consider When
Building A New SCM

Scalable

Atomic

Decentralized
Convenient Branching
Repeated Merge
Robust Storage

Easy to Use

Portable



Early History Of Mercurial



Early History Of Mercurial

 April 6, 2005: Bitmover announces end of
gratis version of Bitkeeper



Early History Of Mercurial

 April 6, 2005: Bitmover announces end of
gratis version of Bitkeeper
Linus mentions he's looking at alternatives



Early History Of Mercurial

 April 6, 2005: Bitmover announces end of
gratis version of Bitkeeper

Linus mentions he's looking at alternatives
I start working on Mercurial



Early History Of Mercurial

 April 6, 2005: Bitmover announces end of
gratis version of Bitkeeper
Linus mentions he's looking at alternatives
I start working on Mercurial
Linus starts working on Git



Early History Of Mercurial

 April 6, 2005: Bitmover announces end of
gratis version of Bitkeeper
Linus mentions he's looking at alternatives
I start working on Mercurial
Linus starts working on Git

 April 8: Linus releases initial nearly useless Git
snapshot



Early History Of Mercurial

 April 6, 2005: Bitmover announces end of
gratis version of Bitkeeper
Linus mentions he's looking at alternatives
I start working on Mercurial
Linus starts working on Git

 April 8: Linus releases initial nearly useless Git
snapshot

 April 19: Mercurial 0.1 released
features: familiar interface, etficient storage,
commit/checkout/clone/pull/merge



Early History Of Mercurial

April 6, 2005: Bitmover announces end of
gratis version of Bitkeeper

Linus mentions he's looking at alternatives
I start working on Mercurial

Linus starts working on Git

April 8: Linus releases initial nearly useless Git
snapshot

April 19: Mercurial 0.1 released
features: familiar interface, etficient storage,
commit/checkout/clone/pull/merge

April 20: Linus fails to destroy Git in a timely
fashion



Desirable Properties For
Revision Storage



Desirable Properties For
Revision Storage

e O(1) addition and retrieval



Desirable Properties For
Revision Storage

e O(1) addition and retrieval

* immutable or append-only



Desirable Properties For
Revision Storage

e O(1) addition and retrieval
* immutable or append-only

 decent compression



Desirable Properties For
Revision Storage

O(1) addition and retrieval
immutable or append-only
decent compression

strong integrity checks



Desirable Properties For
Revision Storage

O(1) addition and retrieval
immutable or append-only

decent compression

strong integrity checks

cluster file changes together on disk



Desirable Properties For
Revision Storage

O(1) addition and retrieval
immutable or append-only

decent compression

strong integrity checks

cluster file changes together on disk

efficient logging and annotate



Revlogs

reviog index

revision 6 record

reviog data

full revision 4

delta 4-5
delta 5-6




Changesets, Manifests, and
Files




Transactions and Rollback



Transactions and Rollback

 Every repository write is protected by a simple
transaction log



Transactions and Rollback

 Every repository write is protected by a simple
transaction log

* The log records the starting length of each
revlog touched



Transactions and Rollback

 Every repository write is protected by a simple
transaction log

* The log records the starting length of each
revlog touched

 On abort, each revlog is truncated to its
original length



Transactions and Rollback

Every repository write is protected by a simple
transaction log

The log records the starting length of each
revlog touched

On abort, each revlog is truncated to its
original length

We save the most recent transaction log to
allow manual rollback (“undo”)



Synchronization and Merging

0@/0*00»048*0

1. Alice makes changes pulls changes from Bob's repository

O*0gy o»o@o

2. Bob makes changes Alice merges with Bob




Taking Advantage of the FS



Taking Advantage of the FS

 Avoiding seeks is critical for performance



Taking Advantage of the FS

 Avoiding seeks is critical for performance

e Traversal order matters!



Taking Advantage of the FS

 Avoiding seeks is critical for performance
 Traversal order matters!

* Ordering by hash means random seeking in the

working directory and degrades to random
seeking on copy



Taking Advantage of the FS

Avoiding seeks is critical for performance
Traversal order matters!

Ordering by hash means random seeking in the

working directory and degrades to random
seeking on copy

Ordering by modification time degrades to
random seeking over time



Taking Advantage of the FS

Avoiding seeks is critical for performance
Traversal order matters!

Ordering by hash means random seeking in the
working directory and degrades to random
seeking on copy

Ordering by modification time degrades to
random seeking over time

Ordering by pathname is stable and gives
largely monotonic head movement



Some Other Optimizations



Some Other Optimizations

* Mercurial uses a custom delta algorithm



Some Other Optimizations

* Mercurial uses a custom delta algorithm

 Applying long chains of deltas is clever



Some Other Optimizations

* Mercurial uses a custom delta algorithm
 Applying long chains of deltas is clever

 Careful ordering avoids locking for most
operations



Some Other Optimizations

Mercurial uses a custom delta algorithm
Applying long chains of deltas is clever

Caretful ordering avoids locking for most
operations

Local clones use copy-on-write



Some Other Optimizations

Mercurial uses a custom delta algorithm
Applying long chains of deltas is clever

Caretful ordering avoids locking for most
operations

Local clones use copy-on-write

Remote clone uses recompression for WAN
transmission



Some Other Optimizations

Mercurial uses a custom delta algorithm
Applying long chains of deltas is clever

Caretful ordering avoids locking for most
operations

Local clones use copy-on-write

Remote clone uses recompression for WAN
transmission

Network protocol uses graph discovery
algorithm for efficiency



A Benchmark



A Benchmark

e commit 773 patches (20MB) for 2.6.18-rc1 to
-mm?2



A Benchmark

e commit 773 patches (20MB) for 2.6.18-rc1 to
-mm?2

e 1.8GHz AMDG64 laptop, 1.2GB of RAM
freshly formatted ext3 filesystem,
data=writeback,noatime



A Benchmark

e commit 773 patches (20MB) for 2.6.18-rc1 to
-mm?2

e 1.8GHz AMDG64 laptop, 1.2GB of RAM
freshly formatted ext3 filesystem,
data=writeback,noatime

e Git 1.4.1:
S git-quilt-import 2.6.18-rcl-mm2

real: 2m7.701ls user: 1ml5.953s sys: O0m30.186s



A Benchmark

commit 773 patches (20MB) for 2.6.18-rc1 to
-mm?2

1.8GHz AMDG64 laptop, 1.2GB of RAM
freshly formatted ext3 filesystem,
data=writeback,noatime

Git 1.4.1:
S git-quilt-import 2.6.18-rcl-mm2

real: 2m7.701ls user: 1ml5.953s sys: O0m30.186s

Mercurial:
S hg gpush -a 2.6.18-rcl-mm2
real: 1ml8.398s user: Om42.511ls sys: Oml0.105s



Mercurial Wiki:
http://selenic.com/mercurial



